A
) |
P

L

A

THE ROYAL A

SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

/,A\\\

71—\
yan

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

PSS THE ROYAL

or—— SOCIETY

Mathieu Functions of General Order: Connection
Formulae, Base Functions and Asymptotic Formulae: I.
Introduction

W. Barrett

Phil. Trans. R. Soc. Lond. A 1981 301, 75-79
doi: 10.1098/rsta.1981.0098

i i i Receive free email alerts when new articles cite this article - sign up in the box
Email alerti ng service at the top right-hand corner of the article or click here

To subscribe to Phil. Trans. R. Soc. Lond. A go to: http://rsta.royalsocietypublishing.org/subscriptions

This journal is © 1981 The Royal Society


http://rsta.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=roypta;301/1459/75&return_type=article&return_url=http://rsta.royalsocietypublishing.org/content/301/1459/75.full.pdf
http://rsta.royalsocietypublishing.org/subscriptions
http://rsta.royalsocietypublishing.org/

Downloaded from rsta.royalsocietypublishing.org

Phil. Trans. R. Soc. Lond. A 301, 75-79 (1981) [ 76 ]

Printed in Great Britain

MATHIEU FUNCTIONS OF GENERAL ORDER:
CONNECTION FORMULAE, BASE FUNCTIONS AND
ASYMPTOTIC FORMULAE

I. INTRODUCTION

By W. BARRETT
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The contents of parts II-V appear on pages 81, 99, 115 and 137.
This is the first, introductory, paper of a series devoted to the derivation of a compre-
hensive set of approximate formulae for solutions of Mathieu’s equation with real
parameters, in terms both of elementary and of higher transcendental functions.
Order-of-magnitude error-estimates are obtained; these in every case reflect faith-
fully the behaviour of the actual error over the appropriate range of parameters and
of independent variable.
. The general scope of the work is outlined in this Introduction, and is compared
e with that of previous work, in particular that of Langer (19345). There then follows
’_‘]‘ ~ a description of the plan of the work and of the content of the several parts.
S
O H
M= 1. ANTECEDENTS
e
SSN @) Several studies have been made of the problem of constructing approximations for solutions
T QO  of the Mathieu equation
= y"+(A—2q cos 2x) y = 0.

The most comprehensive of these appears to be that of Langer (19345). Langer uses the method
of the Liouville-Green (L.-G. or W.K.B.) approximation, with certain extensions and refine-
ments developed by him (Langer 19344), including a procedure for estimating the error of the
approximations. Since then, various authors have further extended and to a considerable
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extent reformulated these methods; for a detailed account, reference may be made to Olver
(1974), who not only brings together much of his own work in this field, but gives historical
notes and references to other work.

In Langer’s (19345) paper, denoted subsequently by ‘L.’; mention is made of other types of
approximation including both convergent and asymptotic series of restricted validity; for
these, as well as for basic properties of solutions of the Mathieu equation, reference may be
made to standard works on Mathieu functions, for example Meixner & Schiafke (1954), which
contains an extensive bibliography, McLachlan (1947) and Arscott (1964). Brief accounts of -
Mathieu functions also appear in several texts on mathematical methods, in particular Morse
& Feshbach (1953). Further asymptotic expansions have been obtained by Blanch (1960),
Dingle & Miiller (1962, 1964) and Jorna (1965), but as usual for such expansions relating to
Mathieu functions, the treatment appears to be purely formal.

The case where the parameters are complex is treated by Sharples (1967, 1971), but in other
respects the parameters are considerably restricted. It is unfortunate that there are errors in
these two papers, relating in particular to the identification of solutions and to their periodic
properties. With the notation of Sharples (1967), the solutions W;(x) of the modified Mathieu
equation, which are characterized by their asymptotic behaviour as x - +00, are identified
with multiples of M®(z) or of M®(z) (Meixner & Schifke 1954); in certain cases the choice of
superscript is wrong and in others the identification should be with one of M®( — z) or M®( — z).
Also, periodicity is attributed to these solutions; this is always false except in the case where
every solution of the ordinary Mathieu equation has period 4r.

2. THE SCOPE OF THE PRESENT SERIES

This is most easily described by means of a comparison with L., which therefore follows, in
points (a)—(e).

(a) As in L., the parameters are restricted to real values while the variable is complex;
otherwise the only requirement is that either |¢| should be large or A should be bounded away
from zero with |A/g| large, when ¢ may be small.

(b) Error estimates in L. are all in the form of ‘uniform estimates’; more precisely, the
estimate of the error relative to a suitable majorant function for the principal term in the
approximation is uniform over the whole domain of the variable involved, though it depends
on the parameters.

The relative remainder estimates obtained below also contain in effect an unspecified bound-
ing constant, but they reflect much more closely the actual behaviour of the remainder. They
are all of the form w(z, A, ¢) O(1), where the first factor is an explicit function of the inde-
pendent variable and parameters, while the factor O(1) represents a function with the same
arguments which is bounded over the domain of (z, A, ¢) specified in each case. To obtain esti-
mates of this form involves considerable extra calculation, but extends the range of validity
of the formulae and has greater accuracy under certain conditions. In fact, the validity of these
estimates requires only that the explicit factor be subject to an arbitrary (but fixed) bound;
it does not depend directly on A or ¢ being large. As an illustration, for the Bessel function
approximations of part V, §4.4, the relative remainder is at least as small as A~¥4 O(1) on the
half-strip {z:0 < Re z < 4=, Im z > 0} provided only that |A/g| > 4 and that A~! is bounded;
subject to these conditions this result remains valid even if ¢ tends to zero.
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(¢) L. only gives formulae for odd and even functions, both for ¢ > 0 and for ¢ < 0, and
such a pair does not in general form a satisfactory basis for the system of solutions; the existence
of pairs that do form such a basis is indicated, but the question is not pursued. Again, the
dependence of the qualitative behaviour of the odd and even solutions on the parameters is
implicit in L.’s formulae, although the errors can, for ¢ < 0, be considerably larger than
it might appear, because of a certain ambiguity in the notation for representing the error.
Solutions of other types, such as Floquet solutions, solutions of the third kind and modified
functions of the second kind, and their relation with the odd and even solutions, are not con-
sidered.

In the present paper, on the other hand, such relations are comprehensively treated, all
being expressed in terms of a single pair of precisely defined auxiliary parameters, functions of
(A, ¢); asymptotic formulae for these auxiliary parameters are naturally included. For real-
variable solutions, both of the ordinary and of the modified Mathieu equation, the construction
of pairs of base functions satisfying criteria introduced by Miller (1950) in connection with Airy
functions, together with these relations, facilitate, for example, the examination of the con-
nection between the qualitative behaviour of particular solutions and the characteristic exponent.
These criteria concern the phase relation between the two solutions when they are oscillatory,
and the growth-rate of their ratio when they are hyperbolic in behaviour.

(d) Different cases — ‘configurations’ — are treated in L. as referring to mutually exclusive
parameter ranges, each with a different type of approximation, though a measure of overlap
can be obtained by choosing different values for certain unspecified bounds. Here, however,
each method is applied over the widest possible parameter range, except where for computa-
tional convenience certain precise bounds have been specified when this was not in fact neces-
sary, specifically, the values |A/¢g| = 4 and A = 0 in connection with approximations in terms
of parabolic cylinder functions and Bessel functions.

Similarly, while in L. different formulae are given in a neighbourhood of a transition point
and elsewhere, here most formulae obtained are applicable on the whole of the relevant do-
main, except at a transition point in the case of elementary function approximations.

(¢) L. does not refer to Airy functions, though his formulae in terms of Bessel functions in
the neighbourhood of a transition point are equivalent to Airy function approximations. The
latter functions appear to have been first introduced into problems of this kind by Jeffreys
(1942).

The approximations given in L. in terms of Whittaker functions can readily be expressed in
terms of parabolic cylinder functions, which seem more appropriate, since the transformation
of independent variables involved is then one-to-one on a region containing the two relevant
transition points. The method used here for obtaining such approximations is different from
that in L. and depends on a Liouville transformation which appears to have been first intro-
duced by Kazarinoff (1958), who treats a differential equation with a fixed pair of simple
transition points. Olver (1975) uses the same transformation, and obtains general results in
the real-variable case when the transition points are variable and may coalesce. In part V,
this transformation is used in an ad hoc manner, adapted to the particular application. No
general theory of the complex-variable case with coalescent turning points is developed; it
does not seem that to do so would shorten the analysis significantly.

The range of validity of the formulae in L. is smaller, but the argument of the Whittaker
functions in L. does in fact provide an approximation to that of the parabolic cylinder functions

10-2
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78 W. BARRETT

in the present paper. Approximations in terms of parabolic cylinder functions are also given in
Hansen (1962); these, however, are not asymptotic as Im x — co.

Finally, for the parameter ranges in which |A/q]| is large, solutions are obtained in L. only
on a domain on which |Im #| is bounded. Here, there is no such limitation; approximations
are obtained on unbounded domains, both in terms of elementary functions and of Bessel
functions, the latter being uniformly valid in the neighbourhood of a pair of transition points,
and also as ¢ — 0 provided only that A is bounded away from zero.

3. THE PLAN OF THE PRESENT SERIES

Part II examines connection formulae relating a solution y(x) of the Mathieu equation and
the solutions y( + x + nn) generated from it by the fundamental group of the equation. The
treatment is exact and is made first in the context of more general periodic differential equations;
the results are then specialized to the Mathieu equation, a function of the third kind, charac-
terized by its asymptotic behaviour as x - oo?, being taken as fundamental.

As in L., the parameters (A, q) are taken as basic, rather than ¢ and the characteristic expo-
nent nv, which may appear inconvenient for many applications. The reason for this choice is
that the solutions behave in a strongly irregular manner as the exponent varies; indeed A is not
uniquely determined by (nv, ¢) unless v is either real or purely imaginary, with the conven-
tional determination of the real part.

At this point, it becomes necessary to distinguish two different parameter ranges, corre-
sponding to the regions of the stability diagram where the solutions are always unstable, and
where subregions of stability and instability alternate. The auxiliary parameters referred to
above are then defined, differently in the two cases, and appropriate pairs of real-variable
base functions are constructed, solutions of the two types of modified equation corresponding
respectively to ¢ > 0 and to ¢ < 0, and of the ordinary equation, where a change of sign of ¢
corresponds to a displacement of x by ix.

Part III comprises an account of the L.-G. method, with estimation of the error, and of its
generalization to the determination of formulae in terms of the solutions of some specified
‘basic equation’ such as the Airy equation. Special attention is given to the basic equations
that are used in parts IV and V, and there are sections devoted to the identification of solutions,
to the estimation of connection coefficients and to the computational aspects of the estimation
of the remainder; asymptotic series developments are not considered. There is little in part ITI
that is essentially new, though some aspects of the presentation are thought to be novel. In
particular, a feature that is emphasized is the close connection between each of the in-
dependent variables used for formulae in terms of different higher functions and that used
for elementary-function approximations.

Part IV is devoted to the application of the methods described in part III, together with
the formulae of part I1, to the derivation of various asymptotic formulae in terms of exponential
and circular functions. Note that by a ‘transition point’ of a differential equation of the form
y" = F(x) y is meant a point where the coeflicient F(x) vanishes or, possibly, has a pole; in
the real-variable case, a simple zero of F(x) corresponds to a transition from exponential to
oscillatory behaviour of the solutions. Thus, elementary-function approximations are not valid
in the neighbourhood of any transition point, while approximations in terms of relatively simple
higher functions can be found which are valid in the neighbourhood of one or more such points.
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The possibilities are set out more fully in the introductory section of part V, and in the
following sections approximations in terms of the various types of higher function are obtained;
in each case, the formulae are collected together in tabular form at the end of the section.
Parts IT and III conform to the same pattern, the formulae being collected in the last section
of the part.

4. CONGLUSION

There are two natural directions that might be followed in the application of similar methods
to a further study of approximations for Mathieu functions. One would be to refine the proce-
dure for estimating the error-control functions sufficiently to lead to realistic upper bounds for
the various remainder terms, in place of mere order-of-magnitude estimates; this problem the
author has so far found quite intractable. The other, which does not seem essentially difficult,
is to extend those results for which it is appropriate, to the case where the parameters A, ¢ take
general complex values. Some exploratory work in this direction has led to interesting tentative
results relating to the Riemann surface of the characteristic values (i.e. values for which there
exist periodic solutions of the differential equation) of A as a function of ¢. Not surprisingly it
appears to consist of four connected components, with infinitely many branch points, corre-
sponding to the four classes of periodic Mathieu functions, ce,,, S€3,, C€sy 1, S5y 1. In addition,
the complete structure of the surface emerges, and estimates are obtainable for the radius of
convergence of the Taylor series for a,, 4, in powers of ¢: it turns out that for large 7, the
radius is of the order of n2, whereas the lower bound given in Meixner & Schiafke (1954, ch. 2,
theorem 7) is of the order of n only.

Note added in proof, 14 January 1981. The author has learnt that some results concerning the
branch-points of a,, 5, as functions of ¢ will appear shortly in Hunter & Guerrieri (1981).

Finally, I should like to express my appreciation of encouragement and advice during the
preparation of this paper from Professor D. G. Crighton, as well as some most helpful corre-
spondence with Professor F. W. J. Olver.
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